Shape mixtures of multivariate skew-normal distributions
نویسندگان
چکیده
Classes of shape mixtures of independent and dependent multivariate skew-normal distributions are considered and some of their main properties are studied. If interpreted from a Bayesian point of view, the results obtained in this paper bring tractability to the problem of inference for the shape parameter, that is, the posterior distribution can be written in analytic form. Robust inference for location and scale parameters is also obtained under particular conditions. © 2008 Elsevier Inc. All rights reserved.
منابع مشابه
On the multivariate Skew-Normal distribution and its scale mixtures
In this paper we study the multivariate skew-normal distribution and its scale mixtures, as extensions of the similar non-skewed distributions. Different parameterizations and some properties are investigated. ∗ Subject Classification: 60E05.
متن کاملRejoinder to the discussion of "Model-based clustering and classification with non-normal mixture distributions"
Non-normal mixture distributions have received increasing attention in recent years. Finite mixtures of multivariate skew-symmetric distributions, in particular, the skew normal and skew t-mixture models, are emerging as promising extensions to the traditional normal and t-mixture models. Most of these parametric families of skew distributions are closely related, and can be classified into fou...
متن کاملBayesian Inference for Shape Mixtures of Skewed Distributions, with Application to Regression Analysis
We introduce a class of shape mixtures of skewed distributions and study some of its main properties. We discuss a Bayesian interpretation and some invariance results of the proposed class. We develop a Bayesian analysis of the skew-normal, skew-generalized-normal, skew-normal-t and skew-t-normal linear regression models under some special prior specifications for the model parameters. In parti...
متن کاملModelling asset return using multivariate asymmetric mixture models with applications to estimation of Value-at-Risk
Value-at-Risk (VaR) is a widely used statistical measure in financial risk management for quantifying the level of risk associated with a specific investment portfolio. It is well-known that historical return data exhibit non-normal features, such as heavy tails and skewness. Current analytical (parameteric) calculation of VaR typically assumes the distribution of the portfolio return to be a n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Multivariate Analysis
دوره 100 شماره
صفحات -
تاریخ انتشار 2009